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D Y N A M I C  F R A C T U R E  A N D  S C A L E  E F F E C T S  ( S U R V E Y )  

A. G. Ivanov UDC 624.539.4 

1. Introduction.  The most important result of linear fracture mechanics (LFM) - -  which is based on Griffith's notion 

that a crack enters an unstable state - -  was the recognition of the fact that fracture (the separation of a whole into parts) is in 

fact the act of work being done. This work is done by elastic strain energy. The acceptance of this point of view led to a critical 

reexamination of fracture criteria and the development of new methods of testing materials for strength. Traditional strength 

criteria - -  the critical values of stress a B and strain ef and their combination - -  turned out to be inadequate. The role of material 

characteristics such as tensile strength cr B was limited to the comparison of materials in standard tests. Meanwhile, technical 

cohesive strength turned out to be 2-4 orders of magnitude lower than the actual strength of materials [1]. It became necessary 

to introduce new fracture criteria, including the fracture work completed on a unit surface Glc. This quantity is usually 

determined as part of the combination G I c E -  Klc 2 (where E is the elastic modulus and Klc is the critical value of  the stress- 

intensity factor). 

The introduction of new fracture criteria required the development of new methods of determining them. The traditional 

strength criteria were easily found by constructing the stress-strain curve of the material, since these criteria were special points 

of the curve (Fig. 1). This was point aB on line 1 for ductile materials and point crf on line 2 for brittle materials. Line 3 is 

an approximation of line 2 used in the present study, while line 4 is the same as 3 except for a higher strain rate. A series of 

tests with special specimens of different sizes usually has to be performed in order to obtain the quantities 23' and Glc or Kic 

and K c, etc. in linear fracture mechanics. 

However, the major successes of LFM and its modifications notwithstanding, this approach still has certain deficiencies 

in regard to the practical application of the results of investigations to specific structures. As evidence, we can cite the periodic 

catastrophic failures of large structures designed in accordance with existing strength standards. The difficulties of using LFM 

increase sharply when attempts are made to describe high-rate dynamic failure - -  in which case diagnosing the growth and 

development of structural defects is almost impossible. These considerations give a reason to look for new approaches to 

solving fracture problems that differ from the local nature of LFM investigations and studies performed by similar methods. 

Just as knowing the laws governing the growth of a single tree does not guarantee that the processes involved in the growth 

of a forest will be understood, so it is that restricting the study of the loading of metals to LFM and its modifications may blind 

investigators to the principles underlying the failure of the load-bearing members of a structure or the structure as a whole. 

2. Integral  Approach to the Problem of Fracture.  Experiments involving the fracture of geometrically similar (GS) 

vessels and shells subjected to high-rate loading have confirmed the existence of significant energy-related scale effects (ERSE). 

The existence of these effects follows from an examination of the elastic energy (EE) balance and the fracture work for the 

entire object being examined and must be accounted for in order to be able to predict fracture. We will henceforth refer to this 

approach to the problem as the integral approach (IA), in contrast to the local approach used in the LFM or its modifications. 

In LFM, the energy balance is examined in the neighborhood of the crack tip. 

The IA was used in [2] for a cube of a material with the edge L. The cube was subjected to tension on two opposing 

faces with the force aL 2. Without loss of generality, it was decided that a bilinear law governed the deformation of the material: 

cr = eE at tr ~ a o anda = a o + K(e - cro/E" ) at a > cr o. (2.1) 

Here, K and a 0 is the strain-hardening modulus and elastic limit of the material. Of course, the value of  a o for actual materials 

depends on both the strain rate ~ and the change in the temperature T of the material, and the latter may in turn change due 
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to plastic flow. However,  if the change in scale is not too great and if fracture is examined in the elastic region or the beginning 

of the elastoplastic region, these effects are small and can be accounted for as corrections. The IA was subsequently generalized 

to other simple objects. 

The elastic region of deformation is the region of the greatest practical interest. Here, fracture occurs in a brittle 

manner over short intervals of time, and the work done by external forces can be ignored. The same conditions prevail in the 

case of dynamic failure in the plastic region. However, description of fracture in this case requires consideration not only of 

the expenditures of elastic energy on plastic flow and the increase in T, but also any possible change in Glc and the elastic 

constants of the material with an increase in fracture strain el. 

For a cube of material, the ratio of elastic energy L3a2/2E to the work of rupture L2X has the form 

a = o ~ L / ( 2 2 E )  (2.2) 

(where k is the unit work of rupture of the material, the analog of 23, and Glc in LFM). When A _> 1, Eq. (2.2) is a necessary 

condition of fracture. When A < 1, it is a necessary condition for nonfracture. In the plane N - -  L (where N = 2XE/a2), the 

rays emanating from point O (Fig. 2) correspond to the states of the material with a constant value of A. In the region A < 

1 (NOB), they correspond to states with the same residual strength, while at A _> l (BOL) they correspond to states with the 

same probability of  fracture. The value a = a o corresponds to the line N = N 0, which with the ray A = 1 divides the plane 

into four characteristic regions. The intersection of N O and A = 1 corresponds to L = L 0 - -  the minimum value of L at which 

the cube can undergo brittle fracture (fracture in the elastic region). This is the brittleness threshold of the material 

L o = 2 2 E 1 ~ .  (2.3) 

Thus, the transition to the brittle state with an increase in the size of the object is a physical property of the material. 

The value of L o depends on temperature T and loading rate # through a 0, as well as on the stress state. This can be shown by 

replacing tension by compression. In this case, a o must be replaced by ~,a o, and the value of L o increases by the factor p-2.  

Thus, the stress at which brittle fracture occurs in compression is 10-20 times greater than the corresponding stress in tension. 

The value of L o in static tension at T - 300 K for copper, stainless steel, mild steel, quenched steel, organic glass, and silicate 

glass is 8.3, 1.5, 0.6, 0.05, 0.006, and 10 - 6  m, respectively. The notation L o conforms to the formula for Irwin's plastic 

correction [3]. 

Of the four regions in Fig. 2, brittle fracture is possible only in region II. While states b 1 and b 2 of two cubes with 

the edges L 1 and L 2 lie on a ray associated with the same probability of fracture, ERSE will be seen in the fracture of the cubes 

in accordance with Eq. (2.2): 

al/al = ( L J L 1 ) W  or a - -  L -v2 .  (2.4) 

In the general case, if the states of cubes undergoing fracture lie on rays associated with different probabilities of failure, the 

manifestion of ERSE may be somewhat weaker (points b 1 and b3) or stronger (points b 2, b 4) than would be expected from 

(2.4). 

Can LFM and its modifications predict the occurrence of ERSE? Not in explicit form. For example, the following was 

written in [4] for a plate of  width L with a central slit 2l 

K = a ~ / L t g ( n l / L ) .  (2.5) 
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Following LFM and regarding the slit as a random quantity independent of L, we obtain the below expression airier we expand 

(2 4) into a series 

K = a q / ~ l l  + ( : t l /L)2/3  + ...I. 

Thus, the effect of L is expressed by a correction of second-order smallness. The same result follows from an examination of 

other types of cracks (slits). The imposition of an additional restriction within the framework of LFM (//L = const) reduces 

Eq. (2.5) to (2.4), i.e. to ERSE, but at the same time it also reduces the overall static examination of the problem to a special 

low-probability event. On the other hand, the above limitation converts the defect into an intrinsic feature of  the object and 

makes the study an exercise in the use of the IA [5]. 

Let us cite one more example that leads us to ERSE, when the F--integral in nonlinear fracture mechanics is employed. 

A criterion for the safety (nonfracture) of pipelines was obtained in [6]. An analysis of this criterion shows that energy-related 

scale effects are obtained if the nonessential terms of the solution are discarded. This solution follows as an elementary result 

from the IA [7]: 

% < {F__.2/I~R(I - v 2) 1} 1/2 

(% and v is the hoop stress and the Poisson's ratio). The examples considered above that lead to ERSE provide grounds for 

hoping that condition (2.4) will be an intrinsic part of all solutions of similar problems of LFM and its modifications. 

Thus, the scale effect first observed experimentally by Galileo in the fracture of geometrically similar objects and 

considered by him to be a characteristic property of a material is clearly shown to be a manifestation of  ERSE when an energy- 

based fracture criterion is used. 

The transition to the region of plastic deformation which occurs as e increases is accompanied by a sharp increase in 

the work done on plastic flow. The latter in turn leads to the growth of structural defects inside the material. The quantities 

~., v, a 0, and E undergo substantial changes at this stage, and the fraction of elastic energy decreases abruptly relative to the 

work done on plastic flow. Thus, the expenditure of EE on the joining of scattered defects into a main crack turns out to be 

relatively small. This situation is equivalent to the absence of ERSE, as is confirmed by the failure of materials far from the 
yield point in static tests. 

3. Dynamic Fracture .  When requirements regarding the similarity of the loading equipment are met, geometrically 

similar objects can readily be shock-loaded by using explosive charges [1]. For GS shells subjected to central or axisymmetric 

loading, the effect of the explosive can be calculated using a short impact approximation. In this case, the values of a and e 

in the elastic strain region will be proportional to ~ at similar moments of  time, where ~ is the ratio of the weight of the 

explosive charge to the weight of  the structure (or a certain part of the structure). Thus, ~ can be regarded as the analog of 

pressure in the static loading. The rate of increase in a decreases after the transition to the plastic region, since E > >  K. The 

relation a(e) will be weak, and it is best if the relation e(~) is used instead. 
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Wave processes begin to play a more prominent role in dynamic loading as loading rate # is increased. The same 

applies to a lesser extent to the relationship between a given object and the external medium. In fact, sometimes the object 

itself, rather than being an integrated whole, is actually a system of independent autonomous regions in which fracture processes 

are localized and independent. In a number of cases, dynamic loading makes it possible to more clearly discern the physical 

laws that result in fracture. Studies of dynamic loading show that satisfaction of the necessary fracture condition also involves 

the satisfaction of a sufficient condition. The latter exists due to the intensive growth of defects inside the material as a result 

of the repeated reflection and interaction of compression and rarefaction waves. This is particularly important if the object is 

deformed in the plastic region. Of course, the foregoing remarks do not mean that defects and stress concentrators initially 

present in the material do not affect the load-carrying capacity of the object. As in static loading, they will have the effect of 

decreasing load-carrying capacity and will cause failure to take place at lower values of A (in the limit A = 1). Conversely. 

an object free of such defects will also be functional at A > >  I. However. its failure will be more violent and catastrophic. 

with larger fragments being produced. Let us consider several examples. 

A. In the case of the internal shock loading of a thin cylindrical or spherical shell at a < a o, the radial vibrations of 

the shell will be unstable and become eventually become flexural. The elastokinetic energy of the shell is redistributed and its 

density turns out to be dependent on the angle: the maximum value occurs at anti.nodes, the minimum at nodes. Thus, six 

different waves are generated in a cylindrical glass-plastic shell with a relative thickness ~5 - 5%. The shell fractures 

simultaneously along 12 meridional planes corresponding to the antinodes of bending waves. The density of elastic energy at 

these antinodes is more than six times greater than the initial value associated with the radial vibrations (Fig. 3). The number 

of bending waves decreases with an increase in c5, and their reaction to shock loads becomes more difficult to predict with a 

transition to thick-walled shells of more complex form [8]. 

B. Of particular interest is high-rate fracture occurring with unidimensional deformation - -  cleavage. Such fractures 

are initiated simultaneously at an enormous number of sites and proceed almost synchronously over a certain plane. In the 

limiting case (in the interaction of rarefaction waves from shock loading), the fracture surface is almost mirror-smooth and the 

number of sites at which fracture originates is estimated to be approximately 108 per square centimeter [9]. Since the store of 

elastic energy in such fracture is determined by the length of the loading pulse ( - L 1) and since the rupture work is independent 
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of the linear dimension ( -  L~ ERSE should be manifest in cleavage [10, 11]. The fact that the deformation process is 

unidimensional and the high rate at which loading takes place sharply reduce the value of L o, so that the failure even of 

materials that are typically ductile occurs in a brittle manner [9]. Energy-related scale effects are also observed, but are 

somewhat less pronounced than indicated by (2.4) due to the existence of the relation X(L). With a decrease in L to the 

interatomic spacing, the value of  X should decrease to double the value of surface tension [i].  Thus, even such a specific type 

of fracture as cleavage is logically incorporated into the energy approach to fracture. 

Of particular interest among the other methods of describing cleavage is the attempt to characterize it from the 

viewpoint of the kinetic concept of strength. Here, cleavage fracture is represented as an extension of  the rupture-strength curve 

of the material during periods of loading r < 10 -4  sec. However, such an description is unacceptable for several reasons: 1) 

the transition from the range of times-to-rupture r > 10 -4  sec (static part) to the region r < 10 -5  sec is accompanied by an 

increase in fracture activation energy U by a factor of 3-6 [10], but such a jump in U seems questionable; 2) part of the curve 

for r > 10 -4  sec is described by the formula 

t = r~,cxp[(U - ?.oo)/kT], 

It follows from the structure of this formula and the dimensions its constants U and 3'o that it describes only the prepartory stage 

of fracture (the accumulation of damages in the material), and although the time interval corresponding to the second (main) 

stage of fracture is short, it is the branch of the curve for r < 10 .5  sec that corresponds to this stage, i.e. the stage in which 

the crack advances over a certain plane: thus, it is hardly proper to combine these two branches into a single curve; 3) the part 

of the curve for r < 10 .5  sec was obtained for conditions under which energy-related scale effects might be manifest. The 

relation r(cr) for r > 10 - 4  sec was determined on bars of uniform cross section in which ERSE were absent, which also serves 

to make combining the branches improper. Thus, the representation of r(a) as a single curve for the interval of r from 10 4 to 

10 .8  - -  as was done in [12] - -  is incorrect. This subject was taken up later in [13]. 

C. Let us now discuss the fractures of GS objects in the transitional elastoplastic region. Figure 4 depicts the structure 

of a vessel that was examined, the scheme employed for its blast loading, and photographs of two fractured GS vessels of 

different sizes (R = 1 and 0.1 m (a, b)) [14]. The completed study showed that it is impossible to have certain important 

information beforehand if the possibility of ERSE is not taken into account for vessels of these radii. Specifically, we cannot 

know the load-carrying capacity of the vessel, its weakest point, or the character of failure (brittle and catastrophic or ductile 

and avalanche). For example, a decrease in R by a factor of 10 (from 1 to 0.1 m) leads to an increase in ~ by a factor of 5-8, 

a shift in the "weak" point (the site where the crack starts) from the edge of the neck to the thinner equatorial region of the 

vessel wall), and a change in the nature of the fracture from brittle to ductile. Here, the value of a increases from 0.18 to 0.54 

GPa and ef increases from 0.11 to 0.62%. 

A strong manifestation of ERSE has also been observed in the explosive failure of other GS objects. For example, the 

authors of [15] described the failure of thick-walled vessels filled with air (P = 1 atm) with a decrease in radius by a factor 

of 15. The value of ~ increased by a factor of 15.7 in this case. Energy-related scale effects were observed in [16] in the rapid 

collapse of tubes. 

D. Use of the integral approach has made it possible to approximately calculate the fracture of a thin ring dispersing 

in the radial direction in a thick plate at the velocity v = const [17]. In accordance with the IA, no restrictions were placed 

on the mechanism by which fracture could have occurred. It was assumed that the fracture process began simultaneously in 

several sections with the beginning of motion of the ring and that fracture occurred as a result of elastic energy being removed 

by unloading waves diverging from these sections. When the sections in which fracture developed were close enough together 

for the unloading waves to be superimposed, fracture in these sections was interrupted. The amount of strain occurring prior 

to failure was determined by the period of time over which the elastic energy necessary for failure was removed. The fracture 

process could have proceeded independently in several sections. The equation of motion of the ring prior to failure has the form 

/~262~(e + 2 ) / 2  + b(2,ue - a )  + ln(e + 1) = 0, 

where/z =/z/g0; ~ = 4EX/(3ca02); e = v/R; 77 is the viscosity of the material. The solution found for a tough material predicts 

a maximum in e(~), this maximum being realized when the strength and viscous forces are the same. Such a maximum was 

observed in [17-20] for several materials. Maxima of e(6), shifted to a region of lower e, are also seen in connection with 
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superplasticity. This follows from the data shown in Fig. 5, which is from [21]. A similar approach was used in [19] to find 

the solution for spherical shells: 

/~26211 - (1 + ~)31/3 + bla - e~(e + 2) 1 - e : 0. 

The physical nature of the maximum owes to a sharp increase in elastic strain energy with the inclusion of viscous forces. There 

is thus a decrease in the size of the region from which the elastic energy needed for fracture is taken, along with a 

corresponding decrease in time to rupture and the displacement of the shell prior to failure. Later refinement of this approach 

in [22] made it possible to examine a more general equation for strain and to describe the fragmentation of shells and the 

breakup of jets from shaped charges. Several researchers [23-26] have stated that the work of rupture is the direct result of the 

energy associated with inertial forces. An analysis of this subject performed on the basis of theoretical representations and 

available empirical data indicates that the description of the phenomenon [27, 28] as being related directly to elastic energy 

should be given priority. As was shown in [11], a similar situation prevails in the description of failures by spallation. 

4. Ways to Avoid ERSE.  Oriented Fiber Composites. Since new products and structures are often designed on the 

basis of trial and error, experimentation has shown the way to several approaches that can be taken to avoiding energy-related 

scale effects. Other methods follow from the integral approach. We will discuss their usefulness below. 

A. Let us examine the design of a steel tie to withstand a force F. With regard to the cross section of the tie S. the 

IA imposes another restriction in addition to the traditional requirement S _ F/a o. To exclude the possibility of brittle fracture. 

the characteristic size of a tie of cylindrical cross section S = rrD2/4 should not exceed the brittleness threshold L 0 = 2XE/a 0. 

Assuming that the diameter D = ~L 0, we obtain the condition for nonfracture in the elastic strain region: 

s ~< = ( ~ , E a ) ' / a '  0. (a. l) 

Here, ~ is the proportionality factor with the transition of L 0 from a cube to a long cylinder. 

Condition (11) is equivalent to the idea that strong new steels can be used to lighten the weight of ties only when the 

value of S is small. In order to satisfy the specified value of F, the tie should be replaced by a set of parallel ties of small cross 

section satisfying (4.1). However, this is what is commonly referred to as a cable. 

B. Another way to avoid brittle fracture is to use multilayered vessels or coiled tubes. Such structures are more 

resistant to brittle cracks than are solid materials. For example, sections of coiled pipes are used in gas lines to stop rapidly 

growing cracks. Their high crack resistance has also been demonstrated under conditions of intensive dynamic loading [29]. 

Nevertheless, direct static [30] and dynamic [31] tests of GS objects made of laminated materials have shown that ERSE do 

occur. However, these effects are weaker than would be expected for structures made of nonlayered materials. For example, 

a fourfold increase in the size of solid steel pipes reduces e by a factor of 2-2.5 [32], while for coiled pipes a tenfold increase 

in size (and a corresponding tenfold increase in the number of layers) reduces e by a factor of just 1.3 [32]. The reason for 

the (albeit weaker) ERSE in the latter case is probably acoustic coupling of the layers. In the case of a cable, there is in fact 

no ERSE. 

Energy-related scale effects should be manifest to their full extent if, when a GS change is made in the size of a coiled 

pipe or multilayered shell, the number of layers is left unchanged and, accordingly, their thickness is changed in proportion 

to the change in scale. 
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C. Let us return to the practically important question of the structure of large objects -- pressure vessels, heavily 

loaded shells, etc. Discussed above were results of experiments with GS objects of solid materials that illustrate the occurrence 

of ERSE. In [33], the IA was used to examine the possibility of brittle subcritical cracking of  thin-walled spherical (4.2) and 

cylindrical (4.3) shells under static (2n = 1) and dynamic loads: 

a < l(2n)t/2FA/I2R(1 - v) 11 '/2 (n = 2 , 1 2 ( R / h )  ~/2 - 0,5); (4.2) 

a < { 2 n F A / l z R ( I  - v 2) ]}1/2 (4.3) 

(n is found from the equation n2(n 2 - -  1) 2 = 3(n 2 + 1)(R/h + 0.5) 2, where h is the thickness of the shell). As might be 

expected, the final formulas can be written using (2.4) or 

a2R < const. (4.4) 

It is obvious that if the theoretical value of a turns out to be lower than a 0 and if the possibility of brittle fracture must be 

eliminated, it will be necessary to replace the large vessel by several small vessels. For example, a doubling of a calls for a 

fourfold reduction in R on the small vessels. To obtain the same overall capacity and maintain the same discharge as in the 

original spherical vessel, it will be necessary to construct 16 geometrically similar small vessels. Such a solution is hardly 

justifiable from an economic standpoint. However, it is much easier to avoid ERSE if the original vessel is cylindrical. In this 

case, with the vessel volume remaining unchanged, it will be sufficient to reduce R and increase the height of the structure. 

An alternative would be to bind together parallel-connected smaller-diameter pipes of the same relative thickness as the original 

vessel. Such a solution might prove quite workable. 

D. In the example with the cable, a restriction was applied only to the cross section of its constituent elements. The 

number of elements could have been as large or small as necessary, depending on the specified load F. This conclusion is of 

fundamental importance, since it opens up the possibility of designing objects of any dimensions that would be free of ERSE. 

More accurately stated, it makes it possible to design structures of different sizes using load-bearing elements having a constant 

characteristic dimension 2r (where r is the radius of an element or strand). 

Taking the above approach to the design of structures also solves another important problem - -  reducing the weight 

of the structure as a whole. The solution lies in the use of brittle lightweight materials such as glass. For example, with a 

density approximately one-third that of steel, a fiber of ordinary glass of grade VM-1 with a diameter 2r = l0/zm fractures 

at a = 4.2 GPa. This is still within the elastic region. Here, elastic strain reaches e = 4.8 %. Composites consisting of oriented 

glass fibers (as the load-bearing element) and epoxy resin (as the binder) are currently in common use in various applications. 

The first experimental studies of the dynamic failure of GS shells made of glass-fiber-reinforced plastics revealed a 

remarkable property of these composites - -  the absence of ERSE [34]. The wave resistances of  the glass and epoxy resin used 

in composites of this type differ by a factor of seven. Thus, it can be expected that structures made of other oriented composites 

(besides glass-epoxy) will also be insensitive to ERSE if the wave resistances of their components are also sufficiently different. 

Subsequent systematic studies of  structures of this material subjected to intensive dynamic loading confirmed the absence of 

ERSE and revealed that these materials have several remarkable properties under dynamic loading conditions [35, 36]. 

Figures 6 and 7 show the results of studies of the load-carrying capacity of GS shells of steel and glass-plastic filled 

with air and water, respectively [40]. The figures show the dependence of load-carrying capacity on scale (relative radius) when 

the shells were subjected to internal blast loading (points 1 are for a shell of steel 22K, point 2 for a glass-plastic shell). No 

energy-related scale effects were present when the shells failed at ~ = const, while such effects were present when ~ was 

increased and R was decreased. The data in the figures also illustrates the decisive role of ERSE compared to other types of 

scale effects [37]. In fact, if a different type of scale effect - -  such as the statistical effect - -  were to be manifest to a significant 

extent, its contribution would be seen most clearly in the failure of shells that were free of ERSE. As follows from Figs. 6 and 

7, no such results were obtained in the experiment. 

5. Statistical Scale Effect and Possible Causes of Catastrophic Brittle Fractures of Large Structures. The above 
examination of  fracture from an energy viewpoint within the framework of the integral approach and linear fracture mechanics 

has physically substantiated the existence of ERSE. Other conditions being equal, these effects are described by Eq. (2.3) within 

the region of elastic deformation - -  the region that is most important for engineering purposes. However, in the overwhelming 
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majority of studies reported in the scientific and technical literature, scale effects are described only from the viewpoint of the 

statistical theory of strength or its variants, leading to the relation 

a -  V - t / ~  - L -t/=, (5.1) 

where V is the volume of material in the object being considered; L is the characteristic dimension for GS objects; m is a 

material constant characterizing their defectiveness. As m ---, ~ ,  the material approaches perfection and its strength approaches 

the theoretical value. 
Why have energy-related scale effects been ignored to such an extent? There are several reasons: 1) the sources of 

explanation for scale effects are closely allied with traditional fracture criteria and the statistical theory of strength; 2) formula 

(5.1) is more general in form than (2.3) and, when m = 2, it formally includes (2.3) as a special case; 3) the value of m is 

found experimentally, so it is thought to more objectively reflect reality. The logical conclusion here is that the nature of scale 

effects is a topic suitable only for academic debate, having no relevance to practical applications. 

What are the possible consequences of ignoring ERSE? In light of the fact that the statistical theory of strength is in 

disagreement with the empirical findings [38], the statistical approach to describing scale effects should be regarded merely 

as a convenient method of describing experimental results [39]. However, in this case the value of  m will depend on the 

conditions under which specimens of the same given material are tested. Recognition of the fact that fracture is in fact the 

completion of work dictates (in order to obtain accurate information in tests with GS objects) that testing machines be modified 

to reflect this. The fact that m depends on the test conditions is usually ignored in static tests and in studies of the statistical 

scale effect, which leads to overestimates of this parameter. For example, a value m > 2 might be obtained as a result of a 

change in X accompanying a change in L [9]. In this case, any increase in the parameter above m = 2 can conveniently be 

taken as arguing against the occurrence of energy-related scale effects. The question of the nature of scale effects is far from 

being purely of academic interest. If in fact the phenomenon is statistical, then it is necessary to find materials with a 

sufficiently large value of m, i.e., materials that are close to being free of defects. With the transition to the full-scale structure, 

having such a material would make it possible to account for the scale effect throught the introduction of a correction factor 

differing slightly from unity. Reality, however, is more demanding. Energy-related scale effects are in essence a consequence 

of the law of conservation of energy. Thus, if the value 3m = 20-100 (instead of 3m = 6) is used in the strength design of 

a large structure, it can be stated a priori that its strength reserves will be overestimated - -  with all of the consequences that 

may ensue from that. "lZhus, it can be said with confidence that the failure of large objects (pressure vessels, bridges, tankers, 

offshore drilling rigs, etc.) can be attributed to a failure to account for ERSE. This has been proven by pipeline fractures 

occurring over distances of many kilometers [7, 40]. Furthermore, the fact that GS shells of glass-plastic have fractured without 

the manifestation of significant scale effects and the fact that the fracture of steel shells has been accompanied by severe scale 

effects (see Figs. 6 and 7) can be regarded as unambiguous evidence of the leading role of ERSE in the failure of traditional 

materials. 
6. Safety Factors and Ways of Preventing Brittle Fracture. What kind of recommendations can be made for the 

design of structures using fracture mechanics (FM), and is the possible manifestation of ERSE always to be considered? As 

was noted above, energy-related scale effects are taken into consideration when a solution can be found by the methods of FM 

(such as in the case of pipelines [6, 7, 40]) or by using a loading scheme employing K-calibration [41]. In the latter case, a 

slit is regarded as a part of the structure. However, such cases are encountered relatively infrequently. In most instances, since 

it is impossible to account for all defects, it is recommended that they be "spread" over the volume of the object. The material 

is then regarded as being free of flaws and the theory of the strength of materials is employed [38, 41]. The possible occurrence 

of ERSE is not considered when this recommendation is followed (especially for large objects) and the safety factor will be 

overstated. 

We will mention two other possibilities which might lead to overestimation of strength and, thus, to brittle fracture. 

One stage of the design process is the selection of a material. It is reasoned that if standard specimens of the same thickness 

as the actual structure do not fail brittly in tests conducted by the FM methods, then it can be expected that the structure itself 

will not fail in a brittle manner [42, 43]. This method of excluding brittle fractures is recommended as the most reliable, due 

to the absence of a criterion for brittle fracture in FM [44] and the fact that it is usually not feasible to directly test full-scale 

objects to the point of failure. 

In tests of specimens of full-scale thickness, the value of Klc is determined at the moment the crack becomes unstable. 

Here, the fol!owing limitation is imposed on the width L of the specimen [45]: 
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L ~ (2,5 ...6,25)KtJa2o.r (6.1) 

A similar formula obtained from the exact solution of the problem of the nonfracture of pipelines leads to the relation 

L >! 2Klr (6.2) 

An important difference between inequalities (6.1) and (6.2) is the use of a 0 2 and or, respectively. In accordance with (6.1), 

the value of Klc is found at a = a 0 2. However, brittle fracture can also occur at cr < ao. 2. In the latter case, Klc will 
correspond to steady-state brittle fracture of the full-scale structure. Thus, the absence of brittle fracture in specimens will not 

be a guarantee that the structure itself will not fail in this way. 

Another possible reason for overestimation of strength as regards brittle fracture is related to the temperature 

dependence of Klc (or GIc, X). Thus, when the determination is made by the methods used in FM, K1c increases with an 

increase in T. Similar relations obtained by the cleavage method have the form of functions that decrease with an increase in 

T. The descending path of the relation is more realistic from a physical viewpoint and is consistent with the low values of unit 

rupture work seen for liquids relative to solids. 

In light of  the foregoing, it could be that, as T is increased, an autonomous steady-state fracture regime might be 

attained on large specimens not suitable for laboratory studies, i.e. on specimens on which any manifestation of ERSE should 

be more apparent. The attainment of such a regime would lead to higher rates of crack growth, localization of plastic flow to 

the crack-tip region, and a decrease in Klc. The possibility of such fracture occurring is indicated by the fact that "....strain 

at the notch root in excess of  10% (with some margin of error) is seen in so-called brittle fracture under laboratory conditions, 

while the strain seen under working conditions does not exceed 2%" [45]. Thus, the value of G1c obtained in the fracture of 

materials in an autonomous steady-state regime and at elevated temperatures may be considerably tess than would follow from 

the value of Klc measured by the FM methods on standard specimens at values of T above the T corresponding to cold- 

shortness. In other words, Klc may be overstated significantly. 

Are there other ways of  predicting and preventing brittle fracture that are free of the above shortcomings? One potential 

approach was examined in [15]. Let us exclude the possibility of directly testing a large object to the point of  fracture or testing 

it to determine its load-carrying capacity. In a number of cases, shells provided with structural elements and loaded from the 

inside act as the main loa~i-bearing member of a structure. It was noted above that the satisfaction of a single necessary 

condition is sufficient for fracture to occur in high-rate dynamic loading. In this case, if we know the stress-strain curve of the 

material and have loaded a geometrically similar model of smaller size to failure, we can predict the character of fracture and 

load-carrying capacity of  the object or its load-bearing member. As an alternative, we could also determine the maximum value 

of the characteristic dimension R o of a GS object for which the fracture process would remain plastic. For example, the authors 

of [15] presented results of  tests of  geometrically similar spherical shells with a relative wall thickness of 21% that were blast- 

loaded to failure. The shells were made of boiler steel (St. 22K) and had solid necks. The outside radius of the shells R was 

75, 15, and 5 cm. The shells were described using a bilinear stress-strain curve for the constituent material in the form (2. I), 

where a o = 0.5 GPa, K = 8.5 GPa, and E = 210 GPa. The integral approach was used to obtain a fracture equation that links 
R i and the fracture strain e i with the quantity Ro: 

Ro'= Ri[l - K / E  + Kei/aoi  2. (6.3) 

At R i > R o, Eq. (6.3) assumes the simpler form 

R o = R , ( a , / % )  ~. 

The value found for R 0'was - 20 cm. This method of predicting R 0 can be extended to actual a(e) curves in order to account 

for u0(g). Figure 8, taken from [15], illustrates the given method of finding R o. Here, points 1 in the plane ~(R-1) correspond 

to fracture of the shell, while points 2 correspond to the case when it remains intact. The Roman numerals I and II denote the 
regions of elastic and plastic deformation. 

An example of the possibly catastrophic consequences of not allowing for ERSE was examined in [46] with reference 

to the design of  vessels having a capacity of several thousand cubic meters and built for use at pressures up to 50 MPa. 
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7. Conclusion. In the studies discussed above, an attempt was made to describe empirical results on the dynamic 

fracture of GS objects from the viewpoint of the integral approach. The discussion was of a qualitative nature in a number of 

instances, and simplifying assumptions were used to explain the essence of the processes in question. This applies to the form 

of the equations chosen to describe deformation, to the discussion of the simplest stress-strain state in GS objects, and to the 

proposition that the physical properties - -  including such characteristics as a o and X - -  of the material of GS objects of different 

sizes remain constant. In the case of the two characteristics just mentioned, the assumptions made are equivalent to assuming 

the absence of a processing factor and supposing that the effect of k* is weak. 

Let us briefly discuss the place of fracture mechanics in the integral approach. In accordance with Eq. (2.2), the 

quantity A is the ratio of the store of elastic energy to the work that needs to be done for a cube to fracture. In region II (see 

Fig. 2), A > 1. Brittle fracture is a possibility in this case. When a = a 0, Eq. (2.2) can be written as L = LoA. Thus, an 

initial crack of the area Lo 2 is sufficient for the brittle fracture of a cube with an edge L placed in tension by a force a0L2. 

However, in the integral approach the quantity L 0 is the minimum value of the characteristic dimension of the object at which 

brittle fracture is still possibile when a = tr 0. This value is by no means small for certain materials. For example, in the 

uniaxial tension of a cube of copper, stainless steel (12Khl8NIOT), or mild steel at T - 300 K, L o is measured in decimeters 

[2]. t Thus, within the context of linear fracture mechanics, brittle fracture cannot occur in region I of the constitution diagram 

constructed in accordance with the integral approach (see Fig. 2) because the critical crack size must be greater than the size 

of the object itself. In the other limiting case A > >  1 - -  typical of materials that are brittle under normal conditions --  the 

state of the object poses a high risk of failure. The value of A can be reduced by sharply lowering L. This also permits use 

of the high value of ao 'of  brittle materials, as was demonstrated in the example of glass-fiber-reinforced plastics. 

It was noted that the quantities Glc and 2~, in FM are the analogs of ;~ in the integral approach. The question of the 

differences in their behavior with an increase in T was discussed in Part 6. Another important difference is the following. The 

values of Glc and 27 are determined in experiments in which a main crack grows, while X is usually determined by high-rate 

fracture (cleavage). In the latter case, fracture is initiated and proceeds synchronously at a large number of sites. The first 

attempt to systematize empirical data on cleavage with GS specimens [1] showed that the exponent with a in Eq. (4.4) has a 

value different than two. Later experiments confirmed this. The change in the exponent is due to the dependence of ~. on the 

length (or time of action) of the tensile pulse [9]. Thus, if this relation is constructed in the form X - L K for geometrically 

similar experimental systems, then Eq. (4.4) for cleavage fracture is written in the form 

a:"cl-")L = const. (7.1) 

*Thus, for steels, a o changes by no more than 2-3 % with a tenfold change in ~. If the type of fracture being examined is not 

cleavage, then Glc ' (the analog of k) is also weakly dependent on ~. According to [47], an increase of  five orders in ~ leads 

to an increase in Klc by a factor of just 1.5-2. With Klc depending linearly on k, an increase of one order in ~ will correspond 
to an increase in Glc by just 0.03-0.04%. 

tSuch a value of L o makes it possible, for example, to understand why a bridge in Melbourne began to fail at a crack length 
of approximately 3 m [3]. 
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The quantity K and the constant in (7.1) are characteristics of the material. They are found from tests conducted with GS 

equipment by looking for the plate collision velocity which leads to cleavage in the target.* For example, values of K reported 

for an aluminum alloy (a0 = 333 MPa, a B = 449 MPa, E = 81 GPa) [49] and copper [9, 50] were 0.24 and 0.63. The 

quantities Gtc or 23, should depend similarly on L. However, as was indicated in the last footnote, it is negligibly small. This 

fact leads us to the conclusion that it is best to use Glc instead of X in the integral approach as well when fracture occurs by 

the growth of a main crack. 

Allowing for the above, let us compare the formulas for the brittleness threshold in the integral approach (2.3) and the 

length of Irwin's plastic zone in fracture mechanics [3] 

1 GLc E 
r -  ~ ~ . (7.2) 

The below equation is obtained from (2.3) and (7.2) to express the brittleness threshold in terms of the Irwin zone: 

L 0 ~-- 4 J [ r  o y 

Thus, at a = %, brittle fracture is possible only for a cube having the dimensions L _> 47try. It cannot occur when 

L < 47try. 

Let us summarize some of the results that have been obtained using the integral approach to describe dynamic fracture. 

1. A scheme for constructing a unified theory of fracture was proposed. The states in which fracture - -  including brittle 

fracture - -  is impossible were indicated. 

2. The decisive role of energy-related scale effects in the dynamic fracture of geometrically similar objects was 

demonstrated. Failure to allow for ERSE in the design and construction of the load-bearing members of large structures leads 

to overestimation of the safety factor. This may be one reason for the unexpected brittle fracture of such objects. 

3. Certain ways of avoiding ERSE in the design of structure made of traditional materials were discussed. A series 

of studies of the dynamic fracture of shells made of glass-fiber-reinforced plastic made it possible to establish and theoretically 

substantiate a remarkable property of this material - -  insensitivity to ERSE. 

4. The integral approach was used to describe the high-rate cleavage failure of a material initiated at multiple sites. 

Particular attention was givgn to qualitative differences in the temperature dependences of Glc (or 23,) and k. It was suggested 

that the values of  Glc and Klc obtained for high temperatures are overestimates. It was shown that X is heavily dependent on 

L (or k) in the case of cleavage. 

5. Features of the fracture of shells both in the elastic strain region under static loads and deep within the plastic region 

were examined. In the latter case, an understanding was reached of the physical nature of the dynamic peak of plastic strain 

exhibited by materials having a tough strength component. This same phenomenon was also described mathematically: A greater 

understanding was also achieved with respect to the mechanism by which shells fragment when exploded and jets formed by 

shaped charges break up. 

6. Use of  the integral approach to study pipelines makes it possible to refine the concept of service reliability to allow 

for dynamic loads and the properties of the pipe material, as well as to evaluate scale effects in fractures occurring under 
extreme abnormal loads [51]. 

*The value of  k for cleavage can also be determined by deliberately choosing a plate collision velocity that will lead to 

cleavage, regardless of the value of L. The value of a for cleavage is determined from the recorded velocity of the free surface 

of the target. In this case, the value of cr will depend on L and the the chosen loading pressure [48]. 
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